Photoelectron Spectroscopy of cis-Nitrous Acid Anion (cis-HONO(-)).
نویسندگان
چکیده
We report photoelectron spectra of cis-HONO(-) formed from an association reaction of OH(-) and NO in a pulsed, plasma-entrainment ion source. The experimental data are assigned to the cis-HONO(-) isomer, which is predicted to be the global minimum on the anion potential energy surface. We do not find evidence for a significant contribution from trans-HONO(-). Electron photodetachment of cis-HONO(-) with 1613, 1064, 532, 355, and 301 nm photons accesses the ground X̃ (1)A' (S0) and excited ã (3)A″ (T1) states of neutral HONO. The photoelectron spectrum resulting from detachment forming cis-HONO (S0) exhibits a long vibrational progression, dominated by overtones and combination bands involving the central O-N stretching and ONO bending vibrations. This indicates that there is a significant change in the central O-N bond length between cis-HONO(-) and cis-HONO (S0). The electron affinity (EA) of cis-HONO is determined to be 0.356(8) eV. We also report the dissociation energy (D0) of cis-HONO(-), forming OH(-) + NO, as 0.594(9) eV, which is a factor of 4 decrease in the central O-N bond strength compared to neutral cis-HONO. The T1 state of cis-HONO is shown to be ∼2.3 eV higher in energy than cis-HONO (S0). Electron photodetachment to form cis-HONO (T1) accesses a transition state along the HO-NO bond dissociation coordinate. The resulting photoelectron spectrum exhibits broad peaks spaced by the terminal N═O stretching frequency. Electronic structure calculations and photoelectron spectrum simulations reported here show very good agreement with the experimental data.
منابع مشابه
Rotational dynamics of nitrous acid (HONO) in Kr matrix.
With the help of ultrafast time-resolved infrared spectroscopy, we investigate rotational diffusion of cis- and trans-nitrous acid (HONO) in solid Kr at 30 K, as well as its reorientation upon the IR-driven cis-->trans isomerization. We find different mobilities for the two isomers: cis-HONO is pinned to the matrix with no decay of the anisotropy on the 100 ns time scale, whereas trans-HONO rot...
متن کاملIntramolecular vibrational energy relaxation in nitrous acid (HONO).
Intramolecular vibrational energy relaxation (IVR) in nitrous acid (HONO) is studied with the help of ultrafast two-color pump-probe spectroscopy. In a previous paper [V. Botan et al., J. Chem. Phys. 124, 234511 (2006)], it has been observed that trans-HONO cools through a cascade of overtones of one specific mode after pumping the OH stretch vibration. We had suggested that this cooling mode i...
متن کاملTemperature dependence of the IR driven cis-trans isomerization of nitrous acid (HONO).
With the help of ultrafast time-resolved infrared spectroscopy, we investigate the temperature dependence of the IR driven cis-->trans isomerization of nitrous acid (HONO) in solid Kr. We find that the lifetime of the OH-stretch vibration, as well as the final cooling into the matrix, is affected only minimally (if at all) by temperature. Nevertheless, the quantum yield of the cis-->trans isome...
متن کاملPhotoelectron spectroscopy and thermochemistry of the peroxyformate anion.
The 351.1 nm photoelectron spectrum of the peroxyformate anion has been measured. The photoelectron spectrum displays vibronic features in both the 2A'' ground and 2A' first excited states of the corresponding radical. Franck-Condon simulations of the spectrum show that the ion is formed exclusively in the trans-conformation. The electron affinity (EA) of the peroxyformyl radical was determined...
متن کاملStructures and energetics of hydrated deprotonated cis-pinonic acid anion clusters and their atmospheric relevance.
Pinonic acid, a C10-monocarboxylic acid with a hydrophilic -CO2H group and a hydrophobic hydrocarbon backbone, is a key intermediate oxidation product of α-pinene - an important monoterpene compound in biogenic emission processes that influences the atmosphere. Molecular interaction between cis-pinonic acid and water is essential for understanding its role in the formation and growth of pinene-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 120 10 شماره
صفحات -
تاریخ انتشار 2016